Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Food Microbiol ; 410: 110489, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38039926

RESUMO

Companilactobacillus alimentarius is a facultatively heterofermentative lactic acid bacterium (LAB) that is a significant constituent within the microbiota of various traditional fermented foods exerting several functions in fermentative or ripening processes. This species has been isolated from Spanish fermented sausages, where its frequency of isolation was comparable to those of Latilactobacillus sakei and Latilactobacillus curvatus. Despite to its presence in several niches, ecological information on this species is still scarce and only few publications report information about its safety features (i.e. antibiotic resistance). Since studies on C. alimentarius concern the analysis of a few individual traits regarding this species, a more extensive work on a larger number of isolates from the same matrix have been performed to allow a clearer interpretation of their phenotypic and technological characteristics. Specifically, 14 strains of C. alimentarius isolated from Mediterranean spontaneously fermented sausages, have been screened for their safety and technological characteristics (such as antibiotic resistance, biogenic amine production, inhibiting potential, growth at different temperatures and NaCl concentrations) and with phenotype microarrays with the aim to elucidate their potential role and contribution to sausage fermentation and ripening. In general, a wide variability was observed in relation to the parameters considered. Several of the tested strains were able to produce histamine, tyramine and putrescine while the antibiotic resistance greatly varied according to the strains, with the exception of vancomycin. In addition, C. alimentarius strains showed a relevant potential to grow in conditions of salt and temperature mimicking those found in fermented foods. In particular, the growth at 10 °C and in the presence of salt can explain the presence of C. alimentarius in sausages and its adaptation to fermented meat environment in which low temperature can be applied during ripening. The differentiation of the phenotypic profile reflected the environmental conditions that influenced the isolation source, including those derived by the raw materials. Given the species frequent association with spontaneous fermentations or the ripening microbiota of various products, despite not being intentionally used as starter cultures, the data presented in this study contribute to a deeper comprehension of their role, both advantageous and detrimental, in numerous significant fermented foods.


Assuntos
Latilactobacillus sakei , Produtos da Carne , Lactobacillus , Fermentação , Aminas Biogênicas , Produtos da Carne/microbiologia
2.
Front Microbiol ; 14: 1156375, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37426006

RESUMO

The past decade witnessed the emergence in Shiga toxin-producing Escherichia coli (STEC) infections linked to the consumption of unpasteurized milk and raw milk cheese. The virulence of STEC is primarily attributed to the presence of Shiga toxin genes (stx1 and stx2) carried by Stx-converting bacteriophages, along with the intimin gene eae. Most of the available information pertains to the "Top 7" serotypes associated with STEC infections. The objectives of this study were to characterize and investigate the pathogenicity potential of E. coli UC4224, a STEC O174:H2 strain isolated from semi-hard raw milk cheese and to develop surrogate strains with reduced virulence for use in food-related studies. Complete genome sequence analysis of E. coli UC4224 unveiled the presence of a Stx1a bacteriophage, a Stx2a bacteriophage, the Locus of Adhesion and Autoaggregation (LAA) pathogenicity island, plasmid-encoded virulence genes, and other colonization facilitators. In the Galleria mellonella animal model, E. coli UC4224 demonstrated high pathogenicity potential with an LD50 of 6 CFU/10 µL. Upon engineering E. coli UC4224 to generate single and double mutant derivatives by inactivating stx1a and/or stx2a genes, the LD50 increased by approximately 1 Log-dose in the single mutants and 2 Log-doses in the double mutants. However, infectivity was not completely abolished, suggesting the involvement of other virulence factors contributing to the pathogenicity of STEC O174:H2. Considering the possibility of raw milk cheese serving as a reservoir for STEC, cheesemaking model was developed to evaluate the survival of UC4224 and the adequacy of the respective mutants as reduced-virulence surrogates. All tested strains exhibited the ability to survive the curd cooking step at 48°C and multiplied (3.4 Log CFU) in cheese within the subsequent 24 h. These findings indicate that genomic engineering did not exert any unintended effect on the double stx1-stx2 mutant behaviour, making it as a suitable less-virulent surrogate for conducting studies during food processing.

3.
Foods ; 11(18)2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36140904

RESUMO

Fermented meat products represent an important industrial sector in Europe, particularly in the Mediterranean Countries (MC), where the presence of numerous local productions, still obtained through spontaneous fermentation, is recognized as a formidable treasure chest of unexplored microbial biodiversity. Lactobacillaceae naturally occurring in fifteen spontaneously fermented sausages from MC (Italy, Spain, Croatia, and Slovenia) were isolated and taxonomically characterized using molecular techniques. Additionally, a safety assessment for the presence of antibiotic resistances and biogenic amine (BA) production was performed to determine their suitability as autochthonous starter cultures. Molecular typing, performed using REP-PCR, discriminated 151 strains belonging to Latilactobacillus sakei (59.6%), Latilactobacillus curvatus (26.5%) and Companilactobacillus alimentarius (13.9%). The minimum inhibitory concentrations (MICs) of eight different antibiotics revealed a high resistance to streptomycin (27%), tetracycline (16%), followed by gentamycin (14%) and kanamycin (13%). Interestingly, the results showed a geographical distribution of resistant biotypes. tetM/tetS or ermB genes were identified in only six strains. The amino-biogenic potential of the strains was assessed, confirming the absence of this trait among L. sakei, while a high number of producer strains was found among L. curvatus. On the 151 analyzed strains, 45 demonstrated safety traits for their future use as starter food cultures. These results open the way to further studies on the technological properties of these promising autochthonous strains, strongly linked to the Mediterranean environment.

4.
Front Microbiol ; 13: 894241, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35814695

RESUMO

The presence of multi-drug resistant (MDR) bacteria in ready-to-eat foods comprises a threat for public health due to their ability to acquire and transfer antibiotic-resistant determinants that could settle in the microbiome of the human digestive tract. In this study, Enterococcus faecium UC7251 isolated from a fermented dry sausage was characterized phenotypically and genotypically to hold resistance to multiple antibiotics including aminoglycosides, macrolides, ß-lactams, and tetracyclines. We further investigated this strain following a hybrid sequencing and assembly approach (short and long reads) and determined the presence of various mobile genetic elements (MGEs) responsible of horizontal gene transfer (HGT). On the chromosome of UC7251, we found one integrative and conjugative element (ICE) and a conjugative transposon Tn916-carrying tetracycline resistance. UC7251 carries two plasmids: one small plasmid harboring a rolling circle replication and one MDR megaplasmid. The latter was identified as mobilizable and containing a putative integrative and conjugative element-like region, prophage sequences, insertion sequences, heavy-metal resistance genes, and several antimicrobial resistance (AMR) genes, confirming the phenotypic resistance characteristics. The transmissibility potential of AMR markers was observed through mating experiments, where Tn916-carried tetracycline resistance was transferred at intra- and inter-species levels. This work highlights the significance of constant monitoring of products of animal origin, especially RTE foodstuffs, to stimulate the development of novel strategies in the race for constraining the spread of antibiotic resistance.

5.
Front Microbiol ; 13: 838383, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35432265

RESUMO

Antimicrobial resistance (AMR) represents an increasing issue worldwide, spreading not only in humans and farmed animals but also in wildlife. One of the most relevant problems is represented by Extended-Spectrum Beta-Lactamases (ESßLs) producing Escherichia coli because they are the cause of important infections in human. Wild boars (Sus scrofa) as a source of ESßLs attracted attention due to their increasing density and their habits that lead them to be at the human-livestock-wildlife interface. The aim of this study was to increase the knowledge about the ESßLs E. coli strains carried by wild boars living in a particularly high-density area of Northern Italy. The analysis of 60 animals allowed to isolate 16 ESßL-producing E. coli strains (prevalence 23.3%), which were characterised from a phenotypical and molecular point of view. The overall analysis revealed that the 16 isolates were all not only ESßL producers but also multidrug resistant and carried different types of plasmid replicons. The genome analysis performed on a subset of isolates confirmed the heterogeneity observed with pulsed-field gel electrophoresis (PFGE) and highlighted the presence of two pandemic sequence types, ST131 and ST10, with different collections of virulence factors. The genomic context of ESßL genes further evidenced that all of them were surrounded by transposons and insertion sequences, suggesting the possibility to exchange AMR genes. Overall, this study shows the worrying dissemination of ESßL-producing E. coli in wild boars in Northern Italy, suggesting the role of these animals as a spreader of AMR and their inclusion in surveillance programmes, to shed light on the "One Health" complex interactions.

6.
Int J Food Microbiol ; 339: 109028, 2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33352462

RESUMO

Due to their traditional use in food fermentation process for centuries, microbial food cultures are considered to have a safe history of use. A specific microbial risk assessment is therefore rarely conducted for fermented foods and their food cultures, inoculated or naturally present. Some of those food cultures have been also considered for their potential health effect as probiotic strain candidates, for which a specific safety demonstration process has been proposed by a joint expert report of FAO and WHO. The European Food Safety Authority (EFSA) Biohazard panel also provides an approach for evaluating the safety of a strain to be added in the food chain, the Qualified Presumption of Safety (QPS). Weissella confusa, former taxon Lactobacillus confusus, is a food culture characterized in the fermentation process of sourdough. Some strains have been recently proposed for their probiotic potential. The species is also documented in recent infection case reports. It is considered nevertheless to be opportunistic as underlying factors have been suggested to explain the infection. We report here the microbial risk assessment of the species, by studying a collection of 26 food and 17 clinical isolates of Weissella confusa. The phenotypic study, genomic characterization and bibliographical survey will allow us to conclude about the safety of the species and confirm its use for food fermentation and consider specific strains for demonstration of their respective health effects as probiotic candidates.


Assuntos
Alimentos Fermentados/microbiologia , Microbiologia de Alimentos , Inocuidade dos Alimentos , Weissella/fisiologia , União Europeia , Fermentação , Genômica , Probióticos , Medição de Risco
7.
Probiotics Antimicrob Proteins ; 13(3): 809-823, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33085038

RESUMO

Probiotics represent a possible strategy for controlling intestinal infections in livestock. Members of the Weissella genus are increasingly being studied for health-related applications in animals and humans. Here we investigated the functional properties of two Weissella cibaria strains isolated from cows reared in Kuwait breeding facilities by combining phenotypic with genomic analyses. W. cibaria SP7 and SP19 exhibited good growth in vitro under acidic conditions and in the presence of bile salts compared to the reference probiotic Lacticaseibacillus (formerly Lactobacillus) rhamnosus GG. Both strains were able to adhere to Caco-2 and HT-29 cell lines, as well as to mucin. The cell-free supernatants of the two isolates exhibited inhibitory activity towards Escherichia coli ATCC 25,922 and Salmonella enterica UC3605, which was ultimately due to the low pH of supernatants. W. cibaria SP19 showed a co-aggregation ability similar to that of L. rhamnosus GG when incubated with S. enterica. Whole genome sequencing and analysis revealed that both strains harbored several genes involved in carbohydrate metabolism and general stress responses, indicating bacterial adaptation to the gastrointestinal environment. We also detected genes involved in the adhesion to host epithelial cells or extracellular matrix. No evidence of acquired antibiotic resistance or hemolytic activity was found in either strain. These findings shed light on the potential of W. cibaria for probiotic use in livestock and on the mechanisms underlying host-microbe interaction in the gut. W. cibaria` strain SP19 exhibited the best combination of in vitro probiotic properties and genetic markers, and is a promising candidate for further investigation.


Assuntos
Bovinos/microbiologia , Probióticos , Weissella , Animais , Células CACO-2 , Genótipo , Células HT29 , Humanos , Kuweit , Fenótipo , Weissella/genética , Weissella/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...